

HAY-THUI UBBECTURI HA HTCM SCIENTIFIC PROCEEDINGS

"NDT days 2011"/ "Дни на безразрушителния контрол 2011"

26th International Conference"Defectoscopy'11// 26 Международна конференция Дефектоскопия'11"

Year /Година XIX

□ Number/ Брой 1 (121)

June/Юни 2011

THE HILBERT TRANSFORM APPLICATION IN EDDY CURRENT TESTING SIGNAL ANALYSIS

ПРИМЕНЕНИЕ ПРЕОБРАЗОВАНИЯ ГИЛЬБЕРТА ДЛЯ АНАЛИЗА СИГНАЛОВ ВИХРЕТОКОВОЙ ДЕФЕКТОСКОПИИ

Проф., д.т.н. Куц Ю.В.¹, аспирант Лысенко Ю.Ю.²

¹ Институт информационно – диагностических систем, Национальный авиационный университет – Киев, Украина ² Приборостроительный факультет, Национальный технический университет Украины

иооростроительный факультег, гациональный технический университет укра "Киевский политехнический институт" – Киев, Украина

e-mail: ivs@nau.edu.ua, j.lysenko@kpi.ua

Abstract: The Hilbert transform of eddy current signal is discussed. Eddy current signals with simultaneous phase and amplitude modulations is investigated. The program simulate such a method of signal analysis was made in Matlab. Also the results of the computer modeling signal processing are discussed and analysis of the evaluation determination characteristics of signals was made.

KEY WORDS: *HILBERT TRANSFORM, TRANSDUCER INFORMATIVE SIGNAL OF EDDY CURRENT TRANSDUCER, SIGNAL ANALYSIS.*

1. Введение

Вихретоковый контроль широко используется для контроля изделий из электропроводящих материалов непосредственно в технологическом процессе. В условиях значительных скоростей взаимного перемещения объектов контроля (ОК) и вихретоковых преобразователей (ВТП) дефекты ОК приводят к локальным изменениям амплитудных и фазовых характеристик информационных сигналов ВТП. В тоже время анализ этих сигналов традиционно выполняется амплитудными, фазовыми или синхронными детекторами, которые имеют значительную инерционность и приводят к погрешностям определения характеристик сигнала при динамическом режиме контроля, не обеспечивают возможности анализа внутрипериодных изменений их амплитудных и фазовых характеристик [1]. Это особенно ощутимо при понижении частоты сигналов, что связано с желанием увеличить глубину зоны контроля.

Одним из новых способов анализа сигнала ВТП является метод с использованием дискретного вейвлет-преобразования (ДВП). В работе [2] описано реализацию ДВП, которая заключается в разделении сигнала на низкочастотную и высокочастотную части с помощью квадратурных фильтров. Такой способ анализа дает возможность получения сигналов, параметры которых будут соответствовать дефектам, но достаточно трудоемкий и требует применения специальных алгоритмов масштабирования.

В данном докладе анализируется возможность применения преобразования Гильберта для анализа информационных характеристик сигналов вихретоковой дефектоскопии с целью обнаружения и измерения амплитудных и фазовых характеристик при их одновременной и ограниченной во времени модуляции, вызванной влиянием дефекта.

2. Постановка задачи

ОК из электропроводящего материала контролируется трансформаторным ВТП, который возбуждается гармоническим сигналом частоты *f*. В результате взаимодействия электромагнитного поля с ОК формируется информационный сигнал, амплитуда и фаза которого изменяется за счет влияния дефектов:

 $u(t) = U(1 + a(t))\cos(2\pi ft + \varphi(t)), \quad t \in (0, T_c),$ (1) где $a(t), \varphi(t)$ – ограниченные во времени модулирующие функции, $|a(t)| < 1, |\varphi(t)| < \pi; U$ – амплитуда сигнала; T_c – время наблюдения.

Необходимо, используя преобразование Гильберта, определить оценки функций $\hat{\boldsymbol{\alpha}}(t)$ и $\hat{\boldsymbol{\varphi}}(t)$, а также погрешность этих оценок.

3. Моделирование, результаты, обсуждение

При моделировании поставленной задачи в среде MatLab, для измерительного сигнала задавались следующие параметры и характеристики: f = 500 Гц. $T_c = 0.04c$, U = 1B, а модулирующие функции a(t) и $\varphi(t)$ задавались с использованием функции Гаусса [3]:

$$a(t) = 0.3e^{-mt}\cos(\pi f t), \qquad (2)$$

где m – параметр, который управляет шириной гауссовской огибающей и равен

$$m = -\frac{5(\pi f b)^2}{\text{w-ln10}},\tag{3}$$

b – относительная ширина полосы сигнала (**b** = **0.6**), **w** – уровень, по которому производится оценка ширины спектра сигнала (**w** = - **6дE**);

$$\varphi(t) = -0.4e^{-itt}\cos(\pi f t). \tag{4}$$

Функции a(t) и $\varphi(t)$ существенно отличные от ноля на интервале времени модуляции T_{M} ($f^{-1} < T_{M} < 8f^{-1}$), в течении которого амплитуда и фаза сигнала предположительно изменяется за счет влияния дефектов. Сигналы были представлены их выборочными значениями, полученными с частотой дискретизации $f_{\pi} = 50$ кГц.

График информационного сигнала приведен на рис.1, функции $\varphi(t)$ и $\alpha(t)$ соответственно на рис.2а, 26.

В процессе обработки информационного сигнала вычислялся его гильберт-образ:

$$u_{\mu}(t) = \mathbf{H}[u(t)], \tag{5}$$

где **H**[u(t)] – оператор преобразования Гильберта [4], который позволил определить характеристики информационного сигнала:

$$A(t) = \sqrt{u_{\rm H}^2(t) + u^2(t)}, \qquad (6)$$

$$\widehat{\Phi}(t) = \operatorname{arctg} \frac{u_{\rm H}(t)}{u(t)} + \mathbf{L} \big(u_{\rm H}(t), u(t) \big), \qquad (7)$$

где $L(u_{H}(t), u(t))$ – оператор развертывания фазовой характеристики за пределами интервала $(-\pi, \pi)$.

 $a(t), \dot{a}(t)$

1.4

1.3

1.2

0.04

t,c

0.04

t,c

4. Заключение

Проведенное моделирование подтвердило возможность использования преобразования Гильберта для определения амплитудной и фазовой характеристик информационных сигналов вихретокового контроля, а также получения их оценок с высокой точностью при условии одновременной модуляции амплитуды и фазы сигналов на ограниченных временных интервалах. Рассмотренный способ анализа дает возможность анализировать изменения амплитуды и фазы сигнала на коротких интервалах времени, которые обусловлены влиянием дефектов ОК в условиях значительных скоростей сканирования ОК.

Погрешность определения характеристик информационного сигнала существенно зависит от длительности временного интервала, в течении которого происходит воздействие дефекта на сигнал – погрешность возрастает с уменьшением интервала. Уменьшение этой погрешности требует проведения дополнительных исследований.

одновременной амплитудной и фазовой модуляцией

б – амплитудная)

Оценки амплитудной и фазовой характеристик измерительного сигнала $\hat{a}(t)$ и $\hat{\phi}(t)$ определялся как:

$$\hat{a}(t) = \frac{A(t)-b}{\hat{b}}, \qquad (8)$$

$$= (\hat{\Phi}(t) - 2\pi ft) \mod 2\pi \qquad (9)$$

$$φ(t) = (Ψ(t) - 2π/t)moa 2π,$$
(9)
Значения оценки амплитуды немодулированного сигнала

 \hat{U} определяется по формуле 6 для участка сигнала в отсутствии модуляции его характеристик (на рис. 2 это интервал $t \in (0.015, 0.025)$).

На рис. 3 и 4 приведены заданные функции амплитудной и фазовой модуляции и их оценки, полученные в соответствии с (8) и (9), а так же погрешности этих оценок. Пунктирной линией на графиках рис. За и рис. 4а обозначены заданные функции $a(t), \varphi(t)$, сплошной – оценки модулирующих функций $\hat{a}(t)$ и $\hat{g}(t)$.

Абсолютные погрешности оценки модулирующих функций $\Delta a(t)$ и $\Delta \varphi(t)$ определялись по формулам:

$$\Delta a(t) = a(t) - a(t), \quad (10)$$

$$\Delta \varphi(t) = \hat{\varphi}(t) - \varphi(t). \quad (11)$$

Из анализа графиков рис. 36 и рис. 46 следует, что абсолютная погрешность оценок этих функций лежит в диапазонах $|\Delta \alpha(t)| < 0.035$ при U = 1B, $|\Delta \varphi(t)| < 0.04$, а относительная - $\left|\frac{\Delta \alpha(t)}{\alpha(t)}\right| < 0.03$, а $\left|\frac{\Delta \varphi(t)}{\varphi(t)}\right| < 0.1$, что

свидетельствует о возможности вихретокового контроля при больших скоростях взаимного перемещения ОК и ВТП.

5. Литература

1. Неразрушающий контроль и диагностика: Справочник / Под ред. В.В. Клюева. – М.: Машиностроение, 1995. – 488с.

2. Д.О. Пчелинцев, С.А. Игнатьев Автоматизированное распознавание локальных дефектов поверхностей качения

колец подшипников при вихретоковом контроле с использованием вейвлет-преобразования // Автоматизация и управление. – 2009. – С. 1-8.

3. Цифровая обработка сигналов / А.Б. Сергиенко – СПб.: Питер, 2003. – 604 с.: ил.

4. Дьяконов В.П. Matlab 6.5 SP1/7 + Simulink 5/6. Обработка сигналов и проектирование фильтров. – М.: Солон-Пресс, 2005г. – 576с.