ВСТУП

Наведені методичні вказівки є допоміжним матеріалом для вивчення курсу «Теплові методи неруйнівного контролю» та виконання розрахунково – графічної роботи з розрахунку окремих параметрів тепловізорів з оптико-механічним скануванням.

У методичних вказівках надано теоретичні відомості про закони розповсюдження інфрачервоного випромінювання і наведено приклади розрахунку окремих його характеристик, а також наведено приклад розрахунку таких параметрів тепловізійної системи як максимальна дальність виявлення об'єкта та температурна чутливість.

1. Теоретична частина

Усі тіла, температура яких відмінна від абсолютного нуля, є джерелами інфрачервоного випромінювання. Характер випромінювання залежить від агрегатного стану речовини. У більшості твердих тіл розподіл енергії випромінювання по спек тру має такий же характер, як і в абсолютно чорного тіла (АЧТ). Такі тіла називають «сірими». Вони характеризуються тим, що відношення їхньої енергетичної світності до енергетичної світності АЧТ, що має таку ж температуру, не залежить від довжини хвилі й називається коефіцієнтом теплового випромінювання (КТВ). Енергетична світимість АЧТ M_e , Вт/м², тобто потік, що випромінюється одиницею поверхні в діапазоні довжин хвиль 0...∞, визначають за законом Стефана-Больцмана:

$$M_e = \sigma T^4, \tag{1,1}$$

де: T – температура АЧТ; $\sigma = 5,6697 \times 10^{-8}$ Вт/(м²×K⁴) = 5,6697×10⁻¹² Вт/(см²·K⁴) – постійна Стефана-Больцмана.

Для сірих тіл закон Стефана-Больцмана має вигляд:

$$M_e = \varepsilon_T \sigma T^4. \tag{1.2}$$

Коефіцієнт теплового випромінювання ε_{τ} є безрозмірним і характеризує частку сумарного за спектром випромінювання даного матеріалу від випромінювання АЧТ, що має таку ж температуру. Через те, елемент тепловізора сприймає не сумарний потік чутливий ШО випромінювання об'єкта. a потік випромінювання певному В діапазоні, необхідно спектральному розподіл енергетичної знати світимості по довжинах хвиль.

За законом Планка спектральна густина енергетичної світимості АЧТ, Вт/см³:

$$M_{e\lambda} = C_1 / [\lambda^5 (e^{\frac{C_2}{\lambda T}} - 1), \qquad (1,3)$$

де λ – довжина хвилі, мкм;

 C_1 , C_2 – постійні величини, пов'язані з постійними константами, $C_1 = 3,7415 \times 10^{-16} \text{ Bt/m}^2$, $C_2 = 1,438 \times 10^{-12} \text{ м·K}$.

Положення максимуму спектральної густини потоку випромінювання АЧТ визначається законом Віна:

$$\lambda_M T = C, \qquad (1,4)$$

де *C* = 2897,8 мкм·К.

Енергетичну світимість АЧТ у заданому спектральному інтервалі $\lambda_1 \dots \lambda_2$ розраховують за допомогою табличних функцій $Z(X_{\lambda}) = M_{e(0\dots\lambda)} / M_{e(0\dots\infty)}$ залежно від безрозмірних значень величини $X_{\lambda} = \lambda / \lambda_M$.

$$M_{e(\lambda 1...\lambda 2)} = \sigma T^{4}[Z(X_{\lambda 2}) - Z(X_{\lambda 1})]$$

Для сірого тіла:

$$M_{e(\lambda 1\dots\lambda 2)} = \varepsilon_T \sigma T^4 [Z(X_{\lambda 2}) - Z(X_{\lambda 1})].$$
(1,5)

Значення функцій $Z(X_{\lambda})$ наведені в таблиці 1.

Графік залежності спектральної густини енергетичної світимості АЧТ від довжини хвилі у відносних одиницях $M_e/(M_{e\lambda})_{max}$ будують за допомогою таблиці 2, в якій наведено значення $y(X_{\lambda})X_{\lambda} = M_e/(M_{e\lambda})_{max}$ залежно від безрозмірної величини $X_{\lambda} = \lambda/\lambda_M$.

Розглянемо тепер приклади розрахунку деяких величин, які у подальшому необхідно буде визначити безпосередньо у розрахунково– графічній роботі.

Приклад 1.1

Визначити енергетичну світимість сірого тіла, яке має коефіцієнт теплового випромінювання $\varepsilon = 0.8$ і температуру T = 700 К у спектральному діапазоні довжин хвиль 2...3 мкм.

Розв'язання:

1. За формулою (1,4) визначаємо довжину хвилі *λ_M*, що відповідає максимуму спектральної густини енергетичної світимості:

$$\lambda_M = 2898 / T = 4,14$$
 MKM.

2. Розраховуємо безрозмірні величини $X_{\lambda} = \lambda / \lambda_M$:

3. За таблицею 1 знаходимо відносні значення спектральної густини $Z(X_{\lambda})$:

$$Z(0,483) \approx 7,42 \times 10^{-3};$$

 $Z(0,725) \approx 8,31 \times 10^{-2}.$

X_{λ}	Z	X_{λ}	Z	X_{λ}	Z	X_{λ}	Ζ
0,100	5,500×10 ⁻	0,630	4,279×10 ⁻²	0,840	0,1479	1,050	0,2836
0,200	4,000×10 ⁻⁸	0,635	4,460×10 ⁻²	0,850	0,1540	1,055	0,2869
0,220	3,100×10 ⁻⁷	0,640	4,645×10 ⁻²	0,855	0,1571	1,060	0,2902
0,240	1,600×10 ⁻⁶	0,645	4,833×10 ⁻²	0,860	0,1602	1,075	0,3001
0,260	6,400×10 ⁻⁶	0,655	5,222×10 ⁻²	0,875	0,1696	1,080	0,3033
0,280	2,030×10 ⁻⁵	0,665	5,626×10 ⁻²	0,880	0,1727	1,090	0,3097
0,300	5,470×10 ⁻⁵	0,675	6,053×10 ⁻²	0,885	0,1759	1,095	0,3129
0,320	1,280×10 ⁻⁴	0,680	6,268×10 ⁻²	0,890	0,1791	1,100	0,3161
0,340	2,690×10 ⁻⁴	0,685	6,487×10 ⁻²	0,895	0,1822	1,105	0,3193
0,360	5,170×10 ⁻⁴	0,690	6,710×10 ⁻²	0,900	0,1854	1,115	0,3257
0,380	9,210×10 ⁻⁴	0,695	6,936×10 ⁻²	0,905	0,1886	1,120	0,3289
0,400	$1,540 \times 10^{-3}$	0,700	7,166×10 ⁻²	0,910	0,1918	1,125	0,3321
0,420	2,430×10 ⁻³	0,705	7,400×10 ⁻²	0,920	0,1983	1,140	0,3417
0,440	3,660×10 ⁻³	0,710	7,637×10 ⁻²	0,930	0,2048	1,145	0,3449
0,460	5,300×10 ⁻³	0,715	7,877×10 ⁻²	0,940	0,2112	1,150	0,3481
0,480	7,410×10 ⁻³	0,720	8,120×10 ⁻²	0,945	0,2145	1,155	0,3512
0,500	1,038×10 ⁻²	0,725	8,307×10 ⁻²	0,950	0,2178	1,160	0,3543
0,515	1,273×10 ⁻²	0,730	8,617×10 ⁻²	0,955	0,2211	1,165	0,3574
0,520	1,359×10 ⁻²	0,735	8,870×10 ⁻²	0,960	0,2244	1,170	0,3605
0,525	1,449×10 ⁻²	0,740	9,127×10 ⁻²	0,965	0,2276	1,175	0,3636
0,530	1,543×10 ⁻²	0,745	9,386×10 ⁻²	0,970	0,2309	1,185	0,3698
0,545	1,849×10 ⁻²	0,750	9,648×10 ⁻²	0,975	0,2342	1,195	0,3760
0,550	1,959×10 ⁻²	0,755	9,913×10 ⁻²	0,980	0,2374	1,205	0,3821
0,560	2,191×10 ⁻²	0,760	0,1018	0,985	0,2407	1,210	0,3851
0,565	2,313×10 ⁻²	0,765	0,1045	0,990	0,2440	1,215	0,3881
0,570	2,439×10 ⁻²	0,780	0,1128	0,995	0,2473	1,220	0,3911
0,575	2,570×10 ⁻²	0,785	0,1156	1,000	0,2506	1,225	0,3941
0,585	2,844×10 ⁻²	0,790	0,1184	1,005	0,2539	1,230	0,3971
0,590	2,987×10 ⁻²	0,795	0,1213	1,010	0,2572	1,235	0,4001
0,595	$3,134 \times 10^{-2}$	0,810	0,1033	1,015	0,2605	1,240	0,4031
0,610	$3,599 \times 10^{-2}$	0,815	0,1329	1,020	0,2638	1,245	0,4061
0,615	$3,763 \times 10^{-2}$	0,825	0,1388	1,025	0,2672	1,250	0,4091
0,620	$3,931 \times 10^{-2}$	0,830	0,1418	1,030	0,2704	1,255	0,4120
0,625	$4,103 \times 10^{-2}$	0,835	0,1449	1,045	0,2803	1,260	0,4149

Таблиця 1. Відносні значення спектральної густини енергетичної світимості $Z(X_{\lambda})$ залежно від $X_{\lambda} = \lambda / \lambda_{M}$

Продовження табл. 1	•
---------------------	---

\mathbf{X}_{λ}	Z	X_{λ}	Ζ	X_{λ}	Z	\mathbf{X}_{λ}	Z
1,265	0,4178	1,500	0,5414	1,695	0,6237	1,890	0,6902
1,270	0,4207	1,505	0,5438	1,700	0,6256	1,895	0,6917
1,275	0,4236	1,510	0,5461	1,705	0,6275	1,905	0,6947
1,280	0,4265	1,515	0,5484	1,710	0,6294	1,910	0,6962
1,285	0,4294	1,520	0,5507	1,715	0,6313	1,915	0,6977
1,290	0,4323	1,525	0,5530	1,720	0,6331	1,920	0,6992
1,295	0,4351	1,530	0,5553	1,730	0,6367	1,925	0,7007
1,310	0,4435	1,535	0,5576	1,735	0,6385	1,930	0,7022
1,315	0,4463	1,540	0,5598	1,740	0,6403	1,935	0,7036
1,320	0,4491	1,545	0,5620	1,745	0,6421	1,940	0,7050
1,325	0,4519	1,550	0,5642	1,750	0,6439	1,945	0,7064
1,340	0,4626	1,555	0,5664	1,755	0,6457	1,950	0,7078
1,345	0,4629	1,560	0,5636	1,760	0,6475	1,955	0,7092
1,355	0,4683	1,565	0,5708	1,765	0,6493	1,960	0,7106
1,360	0,4710	1,570	0,5730	1,770	0,6510	1,965	0,7120
1,365	0,4737	1,575	0,5752	1,775	0,6527	1,970	0,7134
1,370	0,4764	1,580	0,5774	1,780	0,6544	1,975	0,7148
1,380	0,4817	1,585	0,5795	1,785	0,6561	1,985	0,7176
1,385	0,4843	1,590	0,5816	1,790	0,6578	1,990	0,7190
1,390	0,4869	1,600	0,5858	1,795	0,6593	1,995	0,7203
1,405	0,4947	1,605	0,5879	1,800	0,6612	2,00	0,7216
1,410	0,4973	1,610	0,5900	1,805	0,6629	2,01	0,7243
1,415	0,4999	1,615	0,5921	1,810	0,6649	2,02	0,7269
1,420	0,5024	1,620	0,5942	1,815	0,6666	2,03	0,7295
1,425	0,5049	1,630	0,5982	1,820	0,6682	2,04	0,7321
1,430	0,5074	1,635	0,6002	1,825	0,6698	2,05	0,7347
1,435	0,5099	1,640	0,6022	1,830	0,6714	2,06	0,7371
1,440	0,5124	1,650	0,6062	1,835	0,6730	2,07	0,7396
1,450	0,5174	1,655	0,6082	1,840	0,6746	2,08	0,7420
1,460	0,5223	1,660	0,6102	1,845	0,6762	2,09	0,7440
1,470	0,5271	1,665	0,6122	1,855	0,6794	2,10	0,7468
1,475	0,5295	1,670	0,6142	1,860	0,6810	2,11	0,7492
1,480	0,5319	1,675	0,6161	1,865	0,6826	2,12	0,7515
1,485	0,5343	1,680	0,6180	1,870	0,6842	2,13	0,7538
1,490	0,5367	1,685	0,6199	1,875	0,6857	2,14	0,7561
1,495	0.5391	1.690	0.6218	1.885	0.6887	2.15	0.7584

\mathbf{X}_{λ}	Z	\mathbf{X}_{λ}	Z	X_{λ}	Z	\mathbf{X}_{λ}	Ζ
2,16	0,7606	2,38	0,8040	2,66	0,8460	3,4	0,9139
2,17	0,7628	2,39	0,8057	2,68	0,8485	3,5	0,9199
2,18	0,7650	2,40	0,8074	2,70	0,8510	3,6	0,9253
2,19	0,7672	2,41	0,8091	2,72	0,8534	3,8	0,9349
2,20	0,7693	2,42	0,8108	2,74	0,8558	3,9	0,9391
2,22	0,7735	2,43	0,8125	2,76	0,8581	4,0	0,9431
2,23	0,7756	2,44	0,8141	2,78	0,8604	4,2	0,9501
2,24	0,7776	2,45	0,8157	2,80	0,8627	4,4	0,9559
2,25	0,7796	2,46	0,8173	2,82	0,8649	4,6	0,9609
2,26	0,7816	2,48	0,8205	2,84	0,8671	4,8	0,9653
2,28	0,7856	2,49	0,8221	2,86	0,8692	5,0	0,9691
2,29	0,7875	2,50	0,8236	2,88	0,8713	5,5	0,9766
2,30	0,7894	2,52	0,8266	2,90	0,8733	6,0	0,9821
2,32	0,7932	2,54	0,8296	2,92	0,8753	6,5	0,9862
2,33	0,7950	2,56	0,8325	2,96	0,8792	7,0	0,9893
2,34	0,7968	2,58	0,8353	2,98	0,8811	7,5	0,9917
2,35	0,7986	2,60	0,8381	3,0	0,8829	8,0	0,9936
2,36	0,8004	2,62	0,8408	3,1	0,8916	8,5	0,9951
2,37	0,8022	2,64	0,8434	3,2	0,8996	10,0	0,9981

Продовження табл. 1.

Таблиця 2. Відносні значення спектральної густини енергетичної світимості $y(X_{\lambda})$ залежно від $X_{\lambda} = \lambda / \lambda_{M}$

\mathbf{X}_{λ}	У	X_{λ}	У	\mathbf{X}_{λ}	У	\mathbf{X}_{λ}	У
0,200	7,354×10 ⁻⁶	0,280	1,646×10 ⁻³	0,360	1,410×10 ⁻²	0,445	0,1164
0,205	1,191×10 ⁻⁵	0,285	2,056×10 ⁻³	0,365	2,717×10 ⁻²	0,450	0,1246
0,215	2,895×10 ⁻⁵	0,295	3,123×10 ⁻³	0,370	3,051×10 ⁻²	0,460	0,1419
0,220	4,362×10 ⁻⁵	0,300	3,801×10 ⁻³	0,380	3,800×10 ⁻²	0,465	0,1509
0,225	6,428×10 ⁻⁵	0,305	4,591×10 ⁻³	0,385	4,218×10 ⁻²	0,470	0,1603
0,230	9,318×10 ⁻⁵	0,310	5,503×10 ⁻³	0,390	4,666×10 ⁻²	0,480	0,1798
0,235	1,325×10 ⁻⁴	0,320	7,745×10 ⁻³	0,395	$5,144 \times 10^{-2}$	0,485	0,1899
0,240	1,852×10 ⁻⁴	0,325	9,100×10 ⁻³	0,400	4,652×10 ⁻²	0,490	0,2003
0,245	2,548×10 ⁻⁴	0,330	1,063×10 ⁻²	0,405	6,191×10 ⁻²	0,495	0,2109
0,255	4,618×10 ⁻⁴	0,340	1,425×10 ⁻²	0,415	7,364×10 ⁻²	0,500	0,2217
0,260	6,094×10 ⁻⁴	0,345	1,637×10 ⁻²	0,425	8,663×10 ⁻²	0,505	0,2328
0,265	7,943×10 ⁻⁴	0,350	1,871×10 ⁻²	0,430	9,359×10 ⁻²	0,510	0,2440
0,270	1,024×10 ⁻³	0,355	$1,128 \times 10^{-2}$	0,435	0,100	0,520	0,2670

Продовження табл. 2.

\mathbf{X}_{λ}	У	X_{λ}	у	\mathbf{X}_{λ}	У	\mathbf{X}_{λ}	У
0,525	0,2788	0,82	0,9028	1,29	0,8672	2,75	0,1780
0,530	0,2907	0,83	0,9141	1,30	0,8510	2,80	0,1691
0,535	0,3027	0,84	0,9247	1,32	0,8454	2,90	0,1528
0,545	0,3272	0,85	0,9346	1,33	0,8380	2,95	0,1454
0,550	0,3396	0,87	0,9519	1,34	0,8306	3,05	0,1317
0,560	0,3646	0,88	0,9595	1,35	0,8231	3,10	0,1255
0,565	0,3772	0,89	0,9664	1,36	0,8156	3,15	0,1196
0,570	0,3899	0,90	0,9725	1,37	0,8081	3,20	0,1140
0,575	0,4026	0,92	0,9829	1,38	0,8006	3,25	0,1088
0,585	0,4281	0,93	0,9870	1,40	0,7854	3,30	0,1038
0,590	0,4409	0,95	0,9936	1,41	0,7779	3,35	9,915×10 ⁻²
0,595	0,4537	0,96	0,9959	1,42	0,7703	3,40	9,471×10 ⁻²
0,605	0,4791	0,97	0,9977	1,43	0,7628	3,45	9,051×10 ⁻²
0,610	0,4918	0,98	0,9990	1,45	0,7477	3,50	8,654×10 ⁻²
0,615	0,5045	1,00	1,000	1,46	0,7401	3,55	8,277×10 ⁻²
0,620	0,5171	1,01	0,9998	1,48	0,7252	3,60	7,921×10 ⁻²
0,625	0,5296	1,02	0,9991	1,49	0,7177	3,65	7,583×10 ⁻²
0,630	0,5420	1,04	0,9964	1,50	0,7103	3,70	7,262×10 ⁻²
0,635	0,5544	1,05	0,9944	1,55	0,6737	3,75	6,957×10 ⁻²
0,645	0,5788	1,06	0,9920	1,65	0,6039	3,80	6,669×10 ⁻²
0,650	0,5909	1,07	0,9893	1,70	0,5711	3,85	6,394×10 ⁻²
0,655	0,6028	1,08	0,9862	1,75	0,5397	3,90	6,133×10 ⁻²
0,660	0,6147	1,09	0,9828	1,85	0,4815	3,95	5,886×10 ⁻²
0,665	0,6264	1,10	0,9791	1,90	0,4546	4,0	5,650×10 ⁻²
0,670	0,6379	1,12	0,9707	1,95	0,4393	4,2	4,816×10 ⁻²
0,680	0,6606	1,13	0,9661	2,00	0,4054	4,4	4,128×10 ⁻²
0,690	0,6827	1,14	0,9613	2,05	0,3828	4,6	3,557×10 ⁻²
0,695	0,6936	1,15	0,9547	2,10	0,3616	4,8	3,080×10 ⁻²
0,70	0,7042	1,16	0,9509	2,15	0,3417	5,0	2,680×10 ⁻²
0,72	0,7450	1,17	0,9454	2,25	0,3052	5,2	2,342×10 ⁻²
0,73	0,7643	1,19	0,9338	2,30	0,2887	5,4	2,056×10 ⁻²
0,75	0,8007	1,21	0,9215	2,35	0,2731	5,6	1,811×10 ⁻²
0,76	0,8177	1,22	0,9151	2,40	0,2585	5,8	1,602×10 ⁻²
0,77	0,8339	1,23	0,9086	2,45	0,2447	6,0	1,421×10 ⁻²
0,79	0,8638	1,25	0,8952	2,50	0,3218	6,2	1,266×10 ⁻²
0,80	0,8776	1,26	0,8884	2,60	0,2083	6,4	$1,131 \times 10^{-2}$
0.81	0.8906	1.28	0.8743	2.70	0.1875	6.6	1.013×10^{-2}

\mathbf{X}_{λ}	У	X_{λ}	У	\mathbf{X}_{λ}	У	X_{λ}	У
6,8	9,102×10 ⁻³	8,2	4,613×10 ⁻³	9,6	2,577×10 ⁻³	15,0	4,777×10 ⁻⁴
7,0	8,201×10 ⁻³	8,4	4,223×10 ⁻³	9,8	2,387×10 ⁻³	16,0	3,730×10 ⁻⁴
7,2	7,408×10 ⁻³	8,6	3,872×10 ⁻³	10,0	2,214×10 ⁻³	17,0	2,955×10 ⁻⁴
7,4	6,708×10 ⁻³	8,8	3,558×10 ⁻³	11,0	1,549×10 ⁻³	18,0	2,371×10 ⁻⁴
7,6	6,089×10 ⁻³	9,0	3,274×10 ⁻³	12,0	1,116×10 ⁻³	19,0	1,925×10 ⁻⁴
7,8	5,539×10 ⁻³	9,2	3,018×10 ⁻³	13,0	8,242×10 ⁻⁴	20,0	$1,578 \times 10^{-4}$
8,0	5,050×10 ⁻³	9,4	$2,787 \times 10^{-3}$	14,0	6,217×10 ⁻⁴		

Продовження табл. 2.

4. За формулою (1,1) визначаємо енергетичну світимість АЧТ, що відповідає температурі *T* = 700 К:

$$M_e = \sigma T^4 = 1,368 \times 10^4 \text{ BT/m}^2.$$

5. За формулою (1,5) розраховуємо енергетичну світимість в заданому спектральному інтервалі:

$$M_{e(2..3)} = 0.8 \times 13680 [8.31 \times 10^{-2} - 7.42 \times 10^{-3}] = 830 (BT/M^2).$$

Приклад 1.2

Побудувати графіки залежності $M_{e\lambda}/(M_{e\lambda})_{max} = f(\lambda)$ у діапазоні довжин хвиль від 1 до14 мкм для АЧТ із температурою t = 100 °C.

Розв'язання:

1. За формулою (1,4) визначаємо довжину хвилі, що відповідає максимуму спектральної густини енергетичної світності:

$$T = 273 + 100 = 373$$
 K; $\lambda_M = 2898 / T = 7,77$ MKM

2. Задаючись значеннями довжин хвиль від 1 до 14 мкм, розраховуємо безрозмірні величини $X_{\lambda} = \lambda / \lambda_M$ і результати розрахунку заносимо до таблиці 3.

3. За таблицею 2 знаходимо відносні значення спектральної густини енергетичної світимості $y(X_{\lambda}) = M_{e\lambda} / (M_{e\lambda})_{max}$ і заносимо до таблиці 3.

4. За знайденим значенням $y(X_{\lambda})$ будуємо графік залежності $M_{e\lambda}/(M_{e\lambda})_{\max} = f(\lambda)$ для АЧТ із заданою температурою (рис. 1).

λ,мкм	$x_{\lambda} = \lambda / \lambda_{M}$	$y(x_{\lambda})$	λ,мкм	$x_{\lambda} = \lambda / \lambda_{M}$	$y(x_{\lambda})$
1	0,129		8	1,03	0,99
2	0,258		9	1,16	0,95
3	0,387	0,04	10	1,29	0,87
4	0,516	0,26	11	1,42	0,77
5	0,644	0,58	12	1,55	0,67
6	0,772	0,84	13	1,67	0,59
7	0,903	0,97	14	1,81	0,51

Таблиця 3. Відносні значення спектральної густини енергетичної світимості

Рис. 1. Графік залежності відносної спектральної густини енергетичної світимості від довжини хвилі

При аналізі ефективності дії тепловізійнних пристроїв у різних умовах вводять коефіцієнт використання випромінювання *К*, що враховує спектральний склад випромінювання об'єкта спостереження, спектральні характеристики приймача випромінювання тепловізора й функцію пропускання випромінювання шаром атмосфери між тепловізором і об'єктом.

$$K = \frac{\int_{\lambda 1}^{\lambda 2} \frac{M_{e\lambda}}{(M_{e\lambda})_{\max}} S_{\lambda} \tau_{a} d\lambda}{\int_{\lambda 1}^{\lambda 2} \frac{M_{e\lambda}}{(M_{e\lambda})_{\max}} d\lambda},$$
(1,6)

де S₂ – спектральна характеристика приймача випромінювання тепловізора;

 au_{a} – коефіцієнт пропускання атмосфери в діапазоні довжин хвиль $\lambda_{1}...\lambda_{2}$ чутливості приймача випромінювання.

Найбільша складність при розрахунку коефіцієнта K – це визначення функції $\tau_a = \tau_a(\lambda)$, яка залежить від багатьох параметрів і є перервною функцією.

Для інженерних розрахунків коефіцієнта *К* використовують апроксимаційні залежності (таблиця 4) та спектральні характеристики приймачів випромінювання (рис. 2), отримані при зміні вхідних параметрів: висота H = 0...20 км, дальність D = 1...20 км, температура повітря на поверхні землі $t_B = -20...+20$ °C, вологість повітря a = 60...90%, дальність метрологічної видимості $d_B = 10...30$ км, температура об'єкта спостереження T = 400...1100 К.

Таблиця 4. Апроксимаційні залежності для розрахунку коефіцієнта К

Приймач випромінювання і межі чутливості, мкм	Апроксимаційні залежності для коефіцієнта К
РbS (77 K) Δλ = 24 мкм	$K = 0,03 + 1,35X_{11} - 0,63X_{12} + 0,95X_{11} \times X_{12} - 0,89X_{11}^{2};$ $X_{11} = 1,44 \times 10^{-2} - 0,20X_{13} + 1,09X_{14} - 0,97X_{13} \times X_{14} + 1,08X_{13}^{2};$
	$X_{12} = 0,01 - 0,17X_{15} + 1,07X_{14} - 1,03X_{14} \times X_{15} + 1,16X_{15}^{2};$

	$X_{13} = 1,51 \times 10^{-3} + 3,82 \times 10^{-2} \times X_{16} + 0,33X_{17} + 0,99X_{16} \times X_{17} + 0,000$
	$+0.78X_{16}^2-1.63\times10^{-2}X_{17}^2;$
	$X_{14} = -5,71 \times 10^{-2} + 0,66X_{17} + 0,27X_{18} + 0,82X_{17} \times X_{18} -$
	$-0,79X_{17}^2+0,62X_{18}^2;$
	$X_{15} = 0,11 + 0,74X_{19} - 0,65X_{20} + 2,30X_{19}X_{20} - 1,04X_{19}^{2};$
	$X_{16} = 0,50 + 0,20 \times 10^{-3} \times T - 0,08D - 0,20 \times 10^{-4} \times TD + 0,000 \times 10^{-4} \times 10$
	$+0,13 \times 10^{-6} \times T^{2} + 0,32 \times 10^{-2} \times D;$
	$X_{17} = 0,19 + 0,72 \times 10^{-2} H - 0,81 \times 10^{-2} t_{B} + 0,50 \times 10^{-3} H \times t_{B} + 0,50 \times 10^{-3} $
	$+0,40\times10^{-4}t_{B}^{2};$
	$X_{18} = 0,86 - 1,49 \times 10^{-2} d_B - 0,12D + 1,11 \times 10^{-3} d_B \times D +$
	$+0,30\times10^{-3}d_B^2+0,36\times10^{-2}\times D^2;$
	$X_{19} = 0,69 - 2,15^{-3} \times t_B - 0,089 \times D + 0,12 \times 10^{-3} \times t_B \times D + 0,000 \times$
	$+0,50 \times 10^{-4} \times t_{B} + 0,32 \times 10^{-2} \times D^{2};$
	$X_{20} = 0,63 - 8,26 \times 10^{-2} \times D + 0,71 \times 10^{-2} \times H - 0,42 \times 10^{-3} \times DH + 0,12 \times$
	$+3,02 \times 10^{-3} \times D^{2} + 0,70 \times 10^{-4} \times H^{2};$
PbSe (295 K)	$K = 0,04 + 0,45X_{21} + 0,29X_{22} + 0,21X_{21}X_{22} - 0,23X_{21}^{2};$
$\Delta \lambda = 24.2$ мкм	$X_{21} = 0,086 - 0,16X_{23} + 0,74X_{24} + 2,71X_{23}X_{24} - 1,46X_{23}^{2} - 1,46X_{23}$
	$-0.84X_{21}^2;$
	$X_{22} = -0.36 - 0.72X_{25} + 1.39X_{26} - 0.93X_{25}X_{26} + 0.63X_{25}^2 - 0.000X_{25}X_{26} - 0.000X_{25}X_{25} - 0.000X_{25}X_{26} - 0.000X_{26}X_{26} - 0.000X_$
	$-0,39X_{26}^2;$
	$X_{23} = 1,29 - 0,01f - 0,08D - 0,14 \times 10^{-3} \times fD + 0,07 \times 10^{-3} \times f^{2} + 0,07 \times 10^{-3} \times f^{2} + 0,010 \times 10^{-3} \times f^{2} + 0,000 \times 10^{-3} \times f^{2} \times f^{2} + 0,000 \times 10^{-3} \times f^{2} \times f^$
	$+2,84 \times 10^{-3} \times D^{2};$
	$X_{24} = 1,02 - 0,12D - 1,62 \times 10^{-2} \times d_B + 1,19 \times 10^{-3} \times Dd_B + 1,02 \times 10^{-3} \times 10$
	$+3,29\times10^{-3}\times D^{2}+0,40\times10^{-3}d_{B}^{2};$
	$X_{25} = 0,25 - 2,91 \times 10^{-3} \times t_B - 0,09D - 0,60 \times 10^{-4} \times t_BD +$
	$+0,60 \times 10^{-4} \times t_{B} + 2,74 \times 10^{-3} \times D^{2};$
	$X_{26} = 1,09 + 0,01d_B - 2,21 \times 10^{-3} \times T - 0,97 \times 10^{-5} \times d_BT +$
	$+0,13 \times 10^{-3} \times d_B^2 + 0,14 \times 10^{-5} \times T^2;$
InSb (77 K)	$K = 0,03 + 0,81X_{32} + 4,42 \times 10^{-4} \times X_{31}^{2};$
$\Delta \lambda = 35.5$ MKM	$X_{31} = 1,22 \times 10^{-3} + 0,99X_{32} + 0,01X_{32}^2;$
	$X_{32} = 1,78 \times 10^{-2} + 0,86X_{33} + 0,16X_{33}^{2};$

Рис. 2. Спектральні характеристики приймачів випромінювання

Приклад 1.3

Обчислити коефіцієнти використання випромінювання K для наступних умов: приймач випромінювання HgCdTe; $\lambda_1 = 8$ мкм; $\lambda_2 = 14$ мкм; $t_{II} = 727$ °C (T = 1000 K); $d_B = 20$ км; $t_B = 10$ °C; D = 1...20 км.

Розв'язання:

1. За таблицею 4 знаходимо:

$$\begin{split} K &= -0,22 + 0,47X_{41} + 1,05X_{42} + 1,77 \times 10^{-2} X_{41}X_{42} + 1,45 \times 10^{-1} X_{41} - 0,89X_{42}^2; \\ X_{42} &= 1,23 - 1,81 \times 10^{-2} \times 10 - 2,31 \times 10^{-3} \times 1000 + 1,62 \times 10^{-5} \times 10 \times 1000 + 7,06 \times 10^{-5} \times 10^2 + 1,43 \times 10^{-6} \times 1000^2 = 0,34; \end{split}$$

$$X_{41} = 1,06 - 2,15 \times 10^{-2} \times 20 - 1,15 \times 10^{-1} D + 0,54 \times 10^{-3} \times 20D + 0,6 \times 10^{-3} \times 20^{2} + 0,35 \times 10^{-2} D^{2}$$

2. Підставляючи чисельні значення T, t_B і d_B , одержуємо значення K, наведені в таблиці 5. За даними цієї таблиці будуємо графік залежності K = K(D) (рис. 3).

Таблиця 5. Залежність К від дальності

Рис. 3. Графік залежності K = K(D)

Максимальна дальність виявлення D_{max} – один з головних параметрів тепловізора при використанні його для виявлення та спостереження тепловипромінюючих об'єктів на деякій відстані. Нижче наведені основні формули для визначення величини D_{max} .

При виведенні формул були зроблені наступні допущення: об'єкт спостереження являє собою плоский сірий випромінювач, що має постійні коефіцієнт випромінювання й однакову температуру по всій поверхні; нормаль до поверхні випромінювання утворює кут α з лінією дальності D; напрямки променів, що виходять із будь-яких елементарних площадок випромінювання і що опираються на площу об'єктива передавальної камери, настільки близькі один до одного, що кути α й дальність D вважаються однаковими для всіх елементарних площадок і відносяться до геометричного центра поверхні випромінювання; фон, на якому перебуває об'єкт, вважається не випромінюючим; траса спостереження горизонтальна.

Враховуючи ці допущення, отримано формулу для розрахунку D_{\max} , м: $D_{\max}^2 = [(\tau_{ob}S_{ob}\varepsilon_u T_u^4 \cos \alpha \times \sigma \times S_u K)/(\pi m(q_n \Delta f)^{\frac{1}{2}} \Phi^*_{nop} \chi)] \times [z(\lambda_2/\lambda_m) - z(\lambda_1/\lambda_m)], (1,7)$ де K – коефіцієнт використання потоку випромінювання; τ_{ob} , S_{ob} – коефіцієнт пропускання і площа (M^2) об'єктива передавальної камери; S_u , ε_u , T_u – площа, коефіцієнт теплового випромінювання і абсолютна температура об'єкта спостереження відповідно; $\sigma = 5,67 \times 10^{-8}$ BT/(M^2 ·K⁴) – постійний коефіцієнт; m – допустиме значення відношення сигнал/шум; q_n – площа чутливої площадки приймача випромінювання, с M^2 ; Δf – смуга пропускання частот підсилювача фотоструму, Гц; Φ^*_{nop} – питомий поріг чутливості приймача, BT/(с $M \times \Gamma u^{1/2}$), який приведено у каталогах і виміряний по чорному тілу із заданою температурою T^* ; χ – коефіцієнт використання приймача випромінювання; λ_m – довжина хвилі, що відповідає максимальному значенню спектральної густини енергетичної світимості об'єкта спостереження (мкм); *z* – функції, що знаходяться за таблицею 1.

Коефіцієнт використання приймача випромінювання χ знаходять за формулою:

$$\chi = \frac{\int_{\lambda 1}^{\lambda 2} \frac{M_{e\lambda}}{(M_{e\lambda})_{\max}} S_{\lambda} d\lambda}{\int_{\lambda 1}^{\lambda 2} \frac{M_{e\lambda}}{(M_{e\lambda})_{\max}} d\lambda},$$
(1,8)

де $M_{e\lambda}$ – спектральна густина енергетичної світимості абсолютно чорного тіла з температурою T^* , Bt/(см²·мкм); S_{λ}, λ_1 , λ_2 – спектральна чутливість, короткохвильова і довгохвильова границі чутливості приймача випромінювання відповідно; $M_{e\lambda}$ /($M_{e\lambda}$)_{max} – відносне значення спектральної густини енергетичної світимості об'єкта з температурою T_{μ} .

Оскільки шукана величина D_{max} входить у ліву й праву (через коефіцієнт *K*) частини рівняння (1,7), то його можна переписати у вигляді

$$\pi m (q_n \Delta f)^{\frac{1}{2}} \Phi^*{}_{nop} \chi D^2_{\max} = \tau_{o\delta} S_{o\delta} \varepsilon_u T^4_u \cos \alpha \times S_u K[z(\lambda_2 / \lambda_m) - z(\lambda_1 / \lambda_m)], \qquad (1,9)$$

і далі розв'язати його графічно, шляхом побудови окремо кривих залежності лівої і правої частини рівняння (1,9) від дальності D_{max} . Точка перетину двох кривих дає шукане значення максимальної дальності дії тепловізора.

З формули (1,7) видно, що величина D_{max} визначається трьома групами факторів: характеристиками об'єкта спостереження (S_{μ} , ε_{μ} , T_{μ}); параметрами елементів тепловізора (τ_{ob} , S_{ob} , S_{λ} , λ_{I} , λ_{2} , q_{Π} , Φ_{nop}^{*}); спектральним коефіцієнтом пропускання атмосфери на трасі спостереження τ_{a} .

2. Розрахункова частина

Завдання:

1. Розрахувати максимальну дальність виявлення тепловізором об'єкту.

2. Визначити температурну чутливість тепловізора.

Вихідні дані:

Приймач випромінювання на основі HgCdTe; спектральний інтервал приймача випромінювання $\lambda_1 = 8$ мкм, $\lambda_2 = 12$ мкм; температура об'єкта $t_{II} = 185 \,^{\circ}$ C; площа об'єкта спостереження $S_{II} = 1,5 \times 10^{-5} \,^{\circ}$ M²; коефіцієнт теплового випромінювання $\varepsilon_{II} = 0,7$; площа об'єктива передавальної камери $S_{o\delta} = 0,007 \,^{\circ}$ M²; коефіцієнт пропускання передавальної камери $\tau_{o\delta} = 0,8$; площа чутливого елемента приймача випромінювання $q_{II} = 0,2$ см²; питома порогова чутливість приймача випромінювання $\Phi_{nop}^* = 3 \times 10^{-10}$ (Вт/см×Гц^{1/2}/); кут між нормаллю до поверхні ОК та лінією дальності а = 32°; смуга пропускання частот підсилювача $\Delta f = 10 \,^{\circ}$ Кгц; допустиме значення відношення сигнал/шум m = 2,2; висота над рівнем моря $H=1 \,^{\circ}$ км, температура навколишнього середовища $t_B = 20 \,^{\circ}$ C, вологість повітря $f_B = 60\%$, дальність метрологічної видимості $d_B = 20 \,^{\circ}$ KM.

Розв'язання:

1. Знайдемо довжину хвилі, що відповідає максимуму спектральної густини енергетичної світимості об'єкта, використовуючи закон Віна:

$$\lambda_M T = C$$
,
 $\lambda_M = \frac{C}{T} = \frac{2897.8}{(273 + 185)} = \left[\frac{M \kappa M \times K}{K}\right] = 6,32 \ (M \kappa M)$.

2. Розрахуємо безрозмірні величини:

$$X_{\lambda} = \frac{\lambda}{\lambda_{M}},$$

$$X_{\lambda 1} = \frac{\lambda_1}{\lambda_M} = \frac{8}{6,32} = \left[\frac{M\kappa M}{M\kappa M}\right] = 1,266 ,$$
$$X_{\lambda 2} = \frac{\lambda_2}{\lambda_M} = \frac{12}{6,32} = \left[\frac{M\kappa M}{M\kappa M}\right] = 1,899 .$$

3. За таблицею 1 знаходимо відносні значення спектральної густини $Z(X_{\lambda 1})$ і $Z(X_{\lambda 2})$:

$$Z(1,266) = 0,4178$$
,
 $Z(1,899) = 0,6917$.

4. Розрахуємо коефіцієнт використання приймача випромінювання χ при даній температурі об'єкту, для чого побудуємо в однаковому масштабі криві $f_1 = M_{e\lambda} / (M_{e\lambda})_{max}$, $f_2(\lambda) = S$ (рис. 4).

4.1. Побудуємо графік $f_1 = M_{e\lambda}/(M_{e\lambda})_{max}$. Для цього розрахуємо величини $X_{\lambda} = \lambda/\lambda_M$ для заданого інтервалу довжин хвиль. Результати запишемо до таблиці 6. Далі за таблицею 2 знайдемо відносні значення спектральної густини енергетичної світимості $y(X_{\lambda}) = M_{e\lambda}/(M_{e\lambda})_{max}$ і, також, занесемо їх до таблиці 6:

λ , MKM	X_{λ}	$y(X_{\lambda})$
8,00	1,27	0,8813
8,25	1,31	0,8482
8,50	1,34	0,8306
8,75	1,38	0,8006
9,00	1,42	0,7703
9,25	1,46	0,7401
9,50	1,50	0,7030
9,75	1,54	0,6796
10,00	1,58	0,6528
10,25	1,62	0,6248
10,50	1,66	0,5969
10,75	1,70	0,5711
11,00	1,74	0,5460

Таблиця 6.	Результати	розраху	ику
------------	------------	---------	-----

λ , MKM	X_{λ}	$y(X_{\lambda})$
11,25	1,78	0,5222
11,50	1,82	0,4990
11,75	1,85	0,4815
12,00	1,90	0,4546

4.2. Графік $f_2(\lambda) = S \in$ стандартним для даного елементу приймача випромінювання (див. рис. 2).

4.3. Побудуємо третю криву (рис. 4), отриману шляхом добутку $f_3 = f_1 \times f_2$.

4.4. Для визначення коефіцієнта використання приймача випромінювання χ (згідно формули (1,8)) необхідно визначити площу, яка знаходиться під кривою $f_3 = f_1 \times f_2$ по відношенню до кривої $f_1 = M_{e\lambda} / (M_{e\lambda})_{max}$.

Рис. 4. До розрахунку коефіцієнта χ

5. Обчислимо функцію y_1 для декількох значень D_{max} . Результати розрахунків запишемо до таблиці 7 і побудуємо графік цієї функції (рис. 6).

$$y_1 = \pi m (q_n \Delta f)^{\frac{1}{2}} \Phi_{nop}^* \chi D_{max}^2,$$

$$y_1 = 3,14 \cdot 2,2 \cdot \sqrt{0,2 \cdot 10 \cdot 10^3} \cdot 3 \cdot 10^{-10} \cdot 0,54D_{\max}^2 = 1,594 \cdot 10^{-8} \cdot D_{\max}^2$$

6. Обчислимо функцію *у*₂:

$$y_{2} = \tau_{o\bar{o}} S_{o\bar{o}} S_{\mu} \varepsilon_{\mu} T_{\mu}^{4} \sigma \cos \alpha \times K \left[z \left(\frac{\lambda_{2}}{\lambda_{M}} \right) - z \left(\frac{\lambda_{1}}{\lambda_{M}} \right) \right],$$

 $y_2 = 0.8 \cdot 1.5 \cdot 10^{-5} \cdot 0.007 \cdot 0.7 \cdot 458^4 \cdot 5.67 \cdot 10^{-8} \cdot \cos(32) \cdot K \cdot (0.6917 - 0.4178) =$ = 3.351 \cdot 10^{-5} K.

7. Обчислимо коефіцієнт K(D), використавши таблицю 4. Маємо: $K = -0.22 + 0.47X_{41} + 1.05X_{42} + 1.77 \times 10^{-2}X_{41}X_{42} + 1.45 \times 10^{-1}X_{41} - 0.89X_{42}^2$; $X_{42} = 1.23 - 1.81 \times 10^{-2}t_B - 2.31 \times 10^{-3}T + 1.62 \times 10^{-5}t_BT + 7.06 \times 10^{-5}t_B^2 + 1.43 \times 10^{-6}T^2$; $X_{41} = 1.06 - 2.15 \times 10^{-2}d_B - 0.115D + 0.54 \times 10^{-3}d_BD + 0.6 \times 10^{-3}d_B^2 + 0.35 \times 10^{-2}D^2$, де t_B – температура повітря, °C; f_B – відносна вологість повітря, %; d_B – дальність метрологічної видимості, км.

Дані розрахунків $y_2(D_{max})$ та $K(D_{max})$ для кількох значень D_{max} , відповідно, заносимо до таблиці 7. Будуємо графік функції $y_2(D_{max})$ (рис. 6), а також графік залежності коефіцієнта K(D) (рис. 5).

$D_{ m max}$, KM	$y_l(D_{\rm max}) \times 10^{-8}$	$y_2(D_{\rm max}) \times 10^{-8}$	$K(D_{\max})$
1	5,01	1539	0,459
2	20,03	1324	0,395
3	45,07	1132	0,338
4	80,12	962,9	0,287
5	125,2	813,7	0,243
6	180,3	683,4	0,204
7	245,4	570,4	0,170
8	320,5	473,8	0,141

Таблиця 7. Дані для розрахунку максимальної дальності

$D_{ m max}$, КМ	$y_l(D_{\rm max}) \times 10^{-8}$	$y_2(D_{\rm max}) \times 10^{-8}$	$K(D_{\max})$
9	405,6	392,3	0,117
10	500,7	325	0,097

Рис. 5. Графік залежності K = K(D).

Рис. 6. До розрахунку максимальної дальності знаходження ОК.

8. Точка перетину двох кривих $y_1(D)$ і $y_2(D)$ є точкою вихідної максимальної дальності виявлення заданого об'єкту D_{\max} .

Маємо $D_{\text{max}} \approx 8,93$.

9. Для приблизного розрахунку температурної чутливості тепловізора використовуємо формулу:

$$(\Delta T_{nop}) \approx \frac{\pi \cdot \Phi_{nop}^* \lambda_{cp} \sqrt{q_n \Delta f}}{K \left[z \left(\frac{\lambda_2}{\lambda_M} \right) - z \left(\frac{\lambda_1}{\lambda_M} \right) \right] \cdot \varepsilon_{II} T_{II}^2 c_2 \tau_{o\delta} S_{o\delta} \gamma_{_{M \partial H}} \sigma}, \qquad (2,1)$$

де c_2 – друга постійна в законі Планка; λ_{cp} – середнє значення довжини хвилі в інтервалі $\lambda_1 ... \lambda_2$; $\gamma_{_{M2H}}$ – миттєвий кут бачення, який дорівнює:

$$\gamma_{_{MPH}} = \frac{\sqrt{q_n}}{f},$$

f – задня фокусна відстань. Приймаємо $\gamma_{_{M2H}} = 10^{-3}$ рад.

Для обчислення величини (ΔT_{nop}) підставляємо значення K для максимальної дальності виявлення об'єкту з заданими параметрами, тобто $K(D_{max}) = 0,127$.

Обчислюючи значення формули (2,1), отримуємо:

$$\left(\Delta T_{nop}\right) = \frac{3,14 \cdot 3 \cdot 10^{-10} \cdot 10 \cdot \sqrt{0,2 \cdot 10^4}}{0,127 \cdot [0,6917 - 0,4178] \cdot 0,7 \cdot 458^2 \cdot 0,44 \cdot 10^4 \cdot 0,8 \cdot 0,007 \cdot 10^{-3} \cdot 5,67 \cdot 10^{-8}} = 0,018 \text{ K}$$

Таким чином, ми отримали дві основні характеристики тепловізора. Максимальна дальність знаходження об'єкту контролю D_{max} ≈ 8,93. Температурна чутливість тепловізора з даними параметрами складає:

$$\left(\Delta T_{nop}\right) = 0,018$$
 K.

3. Завдання на розрахунково-графічну роботу

І. Розрахувати максимальну дальність виявлення тепловізором об'єкту контролю згідно зразку, що надано на стор. 16-21.

Використовуючи вихідні дані, що визначені викладачем (дивись таблицю 8), побудувати графіки розподілу коефіцієнта використання випромінювання, відносної спектральної густини енергетичної світимості і спектральної характеристики приймача випромінювання та знайти коефіцієнт використання приймача випромінювання χ .

Графічним шляхом визначити максимальну дальність виявлення тепловізором об'єкту.

II. Визначити температурну чутливість тепловізора, використовуючи формулу 2,1. Дані, що не наведені в завданні, студент визначає самостійно, беручі до уваги умови контролю: температуру навколишнього середовища, вологість та ін.

Графік виконання роботи

1-й етап – Розрахунок та побудова графіку залежності відносної спектральної густини енергетичної світимості від довжини хвилі.

2-й етап – Визначення коефіцієнту використання приймача випромінювання.

3-й етап – Визначення максимальної дальності виявлення тепловізором об'єкту контролю.

4-й етап - Розрахунок температурної чутливості тепловізора.

24

Умови захисту роботи

До захисту роботи допускаються студенти, які виконали завдання в повному обсязі. Розрахунково-графічна робота має бути оформлена на одному боці аркушу паперу формату А4. Формули, графічна частина та таблиці мають бути пронумеровані і міститися після посилань на них у тексті роботи. При захисті роботи студент повинен знати закони інфрачервоного випромінювання, фізичний смисл побудованих графіків та вміти пояснити отримані результати.

Варіант	Тип	λ ₁ ,	λ2,	t,	3	6	a 0	Фпор	$\Delta \mathbf{f},$	m	q _π ,
	приймача	мкм	мкм	°C		u	×10 ⁻¹⁰	кГц	m	cm ²	
1	PbS	2.0	4.0	40	0.2	10	5	5	3	0.3	
2	PbS	2.8	5.0	100	0.76	0	1	2	2	0.1	
3	PbSe	2.0	6.8	138	0.26	15	3	8	2	0.25	
4	PbS	2.5	4.0	190	0.1	0	1.5	4	3	0.15	
5	PbSe	2.0	4.2	420	0.59	5	2	3	2	0.4	
6	InSb	3.0	5.5	65	0.22	20	4	10	2.5	0.25	
7	InSb	3.0	4.2	180	0.48	0	7	5	3	0.5	
8	HgCdTe	10	14	150	0.65	0	8	9	2	0.25	
9	PbS	2.0	4.0	300	0.6	30	5	7	2	0.85	
10	PbSe	2.0	4.2	56	0.48	0.5	3	8	3	0.63	
11	PbSe	2.8	4.2	260	0.9	0	10	9	2.5	0.3	
12	PbS	2.0	4.2	200	0.87	25	7	8	4	0.25	
13	InSb	3.8	5.2	250	0.7	0	8	7	3.5	0.48	
14	HgCdTe	8.0	14	75	0.85	7	10	7	2	0.7	
15	HgCdTe	8.0	12	210	0.44	10	5	8	3	0.2	
16	InSb	3.0	5.0	300	0.9	1.5	6	4	2.5	0.45	
17	HgCdTe	8.0	14	300	0.2	0	9	8	2	0.35	
18	PbSe	2.0	4.1	286	0.2	45	8	10	3	0.21	
19	InSb	3.0	5.0	135	0.96	30	5	8	2	0.4	
20	PbSe	2.0	4.0	126	0.1	10	6	4	3.5	0.4	
21	HgCdTe	8.0	14	185	0.7	32	2	5	2.2	2	
22	PbSe	2.5	4.1	86	0.25	17	8	15	2.5	0.1	
23	PbS	2.0	4.5	230	0.33	15	14	12	5	0.1	
24	PbS	2.0	4.0	100	0.56	0	8	5	2	0.25	
25	HgCdTe	10	12	146	0.6	15	1	14	4	0.1	
26	HgCdTe	8.0	12	150	0.96	34	12	11	5	0.3	
27	PbS	2.5	4.0	190	0.35	10	15	8	5	0.22	
28	PbS	2.0	4.2	310	0.95	22	8	5	3	0.4	

Таблиця 8. Вихідні дані для варіантних розрахунків

4. СПИСОК РЕКОМЕНДОВАНОЇ ЛІТЕРАТУРИ

1. Криксунов Л. З. Тепловизоры : справочник / Л. З. Криксунов, Г. А. Падалко. – К. : Техника, 1988. – 165 с.

2. Колобродов В. Г. Тепловізійні системи (фізичні основи, методи проектування і контролю, застосування) : підручник для вищих навч. закладів / В. Г. Колобродов, Н. Шустер. – К. : ДКПП «Тираж», 1999. – 340с.

3. Пореєв В. А. Тепловізійна пірометрія / Володимир Андрійович Пореєв. – К. : Аверс, 2002. – 196 с.

4. Маслова В. А. Термография в диагностике и неразрушающем контроле / В. А. Маслова, В. А. Стороженко. – Харьков : «Компания СМИТ», 2004. – 160 с.

5. Епифанцев Б.Н. Неразрушающий контроль. Ч. 4. : навч. посібник : у 4-х ч. / Б. Н. Епифанцев. – М. : Высшая школа, 1992. – Ч. 4. – 212с.

3MICT

1.	Теоретична частина	3
2.	Розрахункова частина	18
3.	Завдання на розрахунково-графічну роботу	24
4.	Список рекомендованої літератури	27

Для нотаток

Для нотаток